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Recently the nonlocal approximation for solving the Boltzmann equation to determine the electron distribu-
tion function~EDF! in modeling of low-pressure discharges has attracted great interest. The nonlocal approxi-
mation is strictly applicable only to electrons which are confined in the plasma volume by the space charge
electric field. The unconfined electrons which have a sufficiently high total energy to overcome the space
charge potential barrier in front of the walls, and which can therefore be lost from the plasma to the walls, are
not consistently addressed by the nonlocal approximation. We compare EDF’s from nonlocal calculations in
positive column plasmas with and without inclusion of the wall losses in different approximations to results of
an efficient, accurate Monte Carlo benchmark method. The expected range of~column radius!3~gas density!
for applicability of the nonlocal approach with wall losses is confirmed. The anisotropy of the EDF caused by
wall losses of unconfined electrons and by the axial electric field is studied using Monte Carlo simulations. The
impact of the anisotropy on the applicability of the nonlocal approximation is discussed. The importance of the
appropriate inclusion of the wall losses of unconfined electrons in the nonlocal approximation is demonstrated.
An approximation of the treatment of the wall losses in nonlocal calculations is studied, which yields good
agreement with the Monte Carlo results in the entire applicable range of the nonlocal approximation.
@S1063-651X~96!03512-X#

PACS number~s!: 51.10.1y, 52.65.Pp, 52.80.Hc

I. INTRODUCTION

In recent years the modeling of nonequilibrium~glow dis-
charge! plasmas has gained in importance for the develop-
ment and understanding of plasma sources, e.g., for plasma
processing and for lighting applications@1#. One of the major
challenges in this area is the development of a simple but
realistic description of the spatial dependence of the electron
distribution function~EDF! in spatially inhomogeneous non-
equilibrium plasmas. These EDF’s typically deviate signifi-
cantly from Maxwell-Boltzmann distributions@2–4#. A num-
ber of methods to treat this problem have been developed,
and have been successfully applied to a variety of problems,
e.g., the Monte Carlo method@5–9#, the particle in cell
method@10–15#, the convected scheme method@16–21#, or
the direct numerical integration of the electron Boltzmann
equation@22–27#.

However, the above methods are often rather slow, even
using advanced workstations, if spatially multidimensional
systems are considered. The growing necessity to develop
spatially two- or three-dimensional discharge models has
caused a resurgence of interest in semianalytical approxima-
tion methods in recent years@25,28–30#. One of these meth-
ods which is particularly suited for low-pressure, weakly col-
lisional plasmas is the ‘‘nonlocal approximation,’’ which
was first proposed by Bernstein and Holstein in 1954@31#.
For higher pressures the ‘‘local approximation’’~sometimes

also called ‘‘local-field approximation’’! is frequently used
~e.g., @32–38#!. Usually a more efficient treatment of the
problem is achieved by these methods at the expense of a
restricted range of applicability and some uncertainty in
overall accuracy. Therefore, it is an important and necessary
task to test the validity and range of applicability of approxi-
mation methods. Such tests have recently been performed in
a number of investigations@25,27,26,39#. However, the
methods used for comparison in these studies, although more
general than the approximate approaches being tested, are
themselves frequently subjected to a number of assumptions
and restrictions. This is reflected, for instance, in the general
disagreement about boundary conditions to be applied in a
direct integration of the Boltzmann equation@22–27#.

It is desirable to develop benchmark methods for the
treatment of the spatially dependent electron kinetics. A
benchmark method should rely only on a minimum number
of restrictive assumptions and/or mathematical approxima-
tions, and it should provide no ambiguity in the specification
of boundary conditions. Monte Carlo methods are in many
respects the best suited to serve as benchmark methods. Er-
rors in the Monte Carlo simulations are well understood,
because they are essentially just statistical~assuming a par-
ticular set of cross sections and boundary conditions!. A
Monte Carlo approach can be formulated from first princi-
pals without imposing velocity space boundary conditions on
the EDF. Furthermore, in cases where the particle motion
can be described analytically, the errors caused by numerical
inaccuracies can be greatly reduced. Although Monte Carlo
codes are often not fast enough to be run self-consistently
with Poisson’s equation, they can still be used to test other
approximations by importing the electric potential distribu-
tion.
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In this paper we present a highly realistic five-
dimensional ~two spatial and three velocity dimensions!
Monte Carlo code. We apply this code to a dc positive col-
umn plasma, which has recently attracted renewed attention
as a model system for the study of the space dependence of
the electron kinetics in nonequilibrium plasmas@24,21,25–
27#.

We use our Monte Carlo code as a benchmark method for
testing over a range of parameter space a code based on the
‘‘nonlocal approximation.’’ The nonlocal code finds a solu-
tion of a spatially averaged kinetic equation, and reduces the
space-dependent description of the electron kinetics to an
effectively one-dimensional problem. The space dependence
of the EDF is derived from a ‘‘generalized Boltzmann rela-
tion’’ in the nonlocal method. The general validity of this
approach for weakly collisional plasmas has been demon-
strated in a number of experimental@40–42,29# as well as
theoretical investigations@25,27,39#. However, the ‘‘nonlo-
cal approach’’ applies strictly only to the confined electrons,
i.e., those electrons which have a total energy too low to
overcome the space charge potential in order to escape to the
discharge walls. The ‘‘unconfined’’ electrons, which possess
a high enough energy to reach the walls, are not modeled in
a completely satisfactory fashion. This problem has been dis-
cussed@30#, but has not been thoroughly investigated in the
literature. The importance of the unconfined electrons is ob-
vious from the fact that in a steady-state diffusion-dominated
discharge the rate of loss of electrons to the wall exactly
matches the rate of ionization. An inaccurate treatment of the
wall losses of unconfined electrons will thus immediately
result in an erroneous ionization balance. The wall loss rate
also determines the value of the wall potential relative to the
plasma, which is important for many applications. Further-
more, the wall losses may enhance the anisotropy of the
EDF. We are not aware of any thorough explorations of this
effect, and whether it limits the applicability of the nonlocal
approximation, which relies on a moderate anisotropy of the
EDF. The Monte Carlo method allows a rigorous study of
this problem without the necessity of using approximate
boundary conditions in velocity space.

The paper is organized as follows: In Sec. II we explain
the physical assumptions used in our discharge models. De-
tails on the Monte Carlo method are presented in Sec. III.
The ‘‘nonlocal’’ discharge model is briefly described in Sec.
IV. A study of the anisotropy of the EDF caused by both the
wall losses of the electrons and by the axial electric field, and
an investigation of the applicable range of the nonlocal ap-
proximation using a particular treatment of the unconfined
electrons is given in Sec. V. In Sec. VI the conclusions are
summarized and some planned future work is outlined.

II. PHYSICAL ASSUMPTIONS OF THE
DISCHARGE MODELS

The classic positive column discharge is emphasized in
this study. Positive columns have been studied intensively
since the seminal works by Schottky@43# and Tonks and
Langmuir @44#. Schottky modeled a relatively high-pressure
positive column in which ion motion is limited by collisions
with the background gas~mobility limited!, and ion transport
is well described by the concept of ambipolar diffusion.

Tonks and Langmuir modeled a relatively low-pressure posi-
tive column in which ion motion is limited by inertia and ion
transport is well described by the free-fall model. Both
works incorporated the assumption of a Maxwellian electron
distribution. In more recent decades the study of ‘‘diffusive
cooling’’ of electrons in positive columns has been pursued
@45,46,24,21#. Diffusive cooling refers to precisely the kind
of effect we are studying in this work. Although much is
understood about positive columns, scientific interest has re-
mained high because of the very widespread use of positive
column discharges as sources of incoherent and coherent
light.

Only single-step ionization is included in the models used
in this work. We are primarily interested in the effect of the
radial ~space charge! fields on the electron distribution func-
tion. Any comparison of such model results to experimental
results should be limited to lower radius3gas density prod-
ucts,R3N, where single-step ionization is dominant.

Elastic scattering in the models uses the ‘‘momentum
transfer’’ approximation in which electrons are redistributed
isotropically after a scattering event. The elastic momentum
transfer cross section is@32#.

sel5H 1.59310215 cm23u/uex for u,uex

1.59310215 cm23Auex/u for u.uex,
~1!

whereu is the electron kinetic energy, anduex511.55eV is
the excitation threshold energy. An elastic recoil energy loss
on average of 2.7331025 of the incident kinetic energy is
used in all simulations. We are modeling an ‘‘argonlike’’
gas. Only one inelastic scattering process is included in the
model. The cross section for this inelastic scattering process
is

sex51.56310216 cm23 ln~u/uex!/~u/uex! ~2!

for electrons withu.uex, and zero otherwise. Inelastically
scattered electrons lose 11.55 eV, and are also redistributed
isotropically. The single-step ionization cross section is

s i53.18310216 cm23 ln~u/ui !/~u/ui ! ~3!

for electrons withu.ui515.9 eV, andzero otherwise. Both
the ejected and scattered electrons are redistributed isotropi-
cally, and both electrons equally share the available energy
~kinetic energy of the incident electron less threshold energy
of ui515.9 eV!. The isotropic scattering approximation for
inelastic and ionizing collisions is often used in positive col-
umn models. It is a physically reasonable approximation be-
cause the electrons involved in such processes in a positive
column are mainly just above threshold.

It is often assumed in positive column models that all
electrons reaching the column wall recombine with an ion.
This assumption will be used in our models.

A range of radius3gas density products,R3N, is ex-
plored in this study. The range extends from 131014 to
331016 cm22, with the radiusR fixed at 1.0 cm. The non-
local approximation is expected to work very well at the
lower end of the range, at least for the confined electrons.

The radial potential energy for electrons will be approxi-
mated as harmonic„2eF(r )5b1r

2
… from the axis to within
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one radial cell of the column wall (125 of the radius!. Herer is
the radius in cylindrical coordinates,F(r ) is the electrostatic
potential, andb1 is a constant. The potential energy is con-
tinuous at the inner boundary of the last cell, harmonic
„2eF(r )5a21b2r

2
… in the last cell, and continuous to the

wall potential energy2eFw . These approximations result in
a discontinuity in the slope of the radial potential~radial
field! at the inner boundary of the last cell. The harmonic
potential approximation is arguably correct near the axis of
the column from symmetry considerations. The harmonic
potential approximation greatly accelerates the Monte Carlo
simulations. In later investigations, this approximation will
be avoided. The radial potential energy2eFsh at the inner
boundary of the outermost radial cell is assumed to be 8 eV
above the axial potential energy. A steep change in potential
(Fw2Fsh) in the outermost cell represents the plasma
sheath.

The axial electric field Ez and the potential drop
Fw2Fsh of the sheath in the outermost radial cell are both
found self-consistently using two constraints. The first con-
straint is that wall losses of electrons be balanced by ioniza-
tion. The second constraint is that the average ionization rate
per unit volume matches the average ion loss rate per unit
volume from the ambipolar diffusion equation,

Ds

L2 n̄5nn i . ~4!

Here nn i is the average ionization rate per unit volume,
L5R/2.405 is the typical diffusion length, andn̄ is the av-
erage electron density. For the ambipolar diffusion coeffi-
cientDs we use an approximation proposed by Ingold@47#,
which approaches the free-fall Tonks-Langmuir case in the
smallR3N limit as well as the collision-dominated Schottky
case in the largeR3N limit: Ds5Da /„112nn i /(n̄ncx)….
HereDa'kTem i /e is the usual ambipolar diffusion coeffi-
cient from the Schottky theory, wherek is the Boltzmann
constant, m i5e/Mincx is the ion mobility, and
ncx5Nv iQcx is the ion-neutral charge exchange collision
frequency whereN is the neutral gas density,v i the thermal
speed of the ions, andQcx540310220 m2 the charge ex-
change cross section.Mi is the ~argon! ion mass. The elec-
tron temperatureTe is approximated as

2
3 of the mean kinetic

energy of the EDF in the discharge center divided by the
Boltzmann constantk. Both constraints are fulfilled with an
accuracy of better than 2% at the lower three gas densities,
and within 5% for the higher three gas densities.

III. DETAILS OF THE MONTE CARLO CODE

Some of the details of the Monte Carlo code used to simu-
late electron kinetics and transport in the positive column are
outlined in this section. The code uses a null collision ap-
proach based on von Neumann’s method of rejection to
eliminate any numerical integration@48#. The use of a piece-
wise harmonic radial potential is a key approximation be-
cause it makes the ballistic radial motion completely ana-
lytic.

It is both convenient and physically reasonable to choose
a model set of cross sections such that the collision rate,
Ns tv, has an absolute maximum for any electron energy.

Here s t is the total cross section ~note:
s t5sel1sex1s ion) , andv is the electron speed. In a Monte
Carlo simulation based on mean free times the differential
probability dP of a collision in the distance incrementds
along an electron trajectory is

dP5expS 2E
0

s

s tNdsDs tNds. ~5!

The cumulative probabilityP(s) of a collision within a dis-
tances along the electron’s trajectory is

P~s!512expS 2E
0

s

s tNdsD . ~6!

This cumulative probability is set equal to a pseudo-random-
numberr 1 on the~0, 1! interval

r 15P~sc! ~7!

to define the distance,sc , where the next collisions occurs
along the trajectory.

The equation

ln~12r 1!5E
0

sc
s tNds5NE

0

tc
s tvdt ~8!

must be solved in order to findsc or the elapsed time,tc ,
until the next collision. The integral becomes analytic by
adding the fictitious null cross sectionsn , which makes the
integrand constant by making (s t1sn)v independent of the
electron kinetic energy and equal to the maximum ofs tv
@49,50,5#. Thus we find

tc5
ln~12r 1!

N~s tv !max
. ~9!

Five variables are needed because two spatial and three
velocity coordinates are tracked. We find a convenient set of
variables to be: the axial orz component of the speed,vz ,
where thez axis is the column axis; the total~potential plus
kinetic! z energy,«z ; the radius squared,r

2, in a cylindrical
coordinate system; the radial velocity,v r ; and the total~po-
tential plus kinetic! energy in the plane perpendicular to the
z axis,«perp. During ballistic motion, two of the coordinates
are constant, and three need to be updated. Clearlyvz at the
next collision is

vzc5vz02
eEz
m

tc , ~10!

wherevz0 is the coordinate value at the preceding collision,
and whereEz is the axial electric field,2e the electron
charge, andm the electron mass. The first integral of the
equation of motion in the perpendicular plane is

m

2
v r
21

Lz
2

2mr2
1aj1bjr

25«perp, ~11!

whereLz is the angular momentum about the column orz
axis, andaj andbj define the harmonic potential in thej th
radial cell. A convenient change of variable is to define
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b5r 21
~aj2«perp!

2bj
. ~12!

The first integral of the harmonic oscillator equation is re-
covered as

~ ḃ !21
8bj
m

b25
8bj
m S aj2«perp

2bj
D 22 4Lz

2

m2 . ~13!

The analytic solution used to advancer 2 andv r is

b~ t !5Ab0
21~ ḃ0 /v!23cos~vt1Q!, ~14!

ḃ~ t !52rv r52vAb0
21~ ḃ0 /v!23sin~vt1Q!, ~15!

where

v5A8bj /m ~16!

and

Q52tan21S ḃ0

vb0
D . ~17!

This analytic solution is conveniently structured to evaluate
the minimum timetb required for the electron to penetrate a
boundary of its current spatial cell. The electron distribution
function is sampled at 25 radial cell boundaries, uniformly
spaced inr , and is also sampled at 15 axial cell boundaries,
uniformly spaced inz. The tracking of the axial motion is
maintained in order to eliminate end effects near the cathode
and anode in these simulations. These end or sheath effects
will be studied in future work. The approach for sampling
the distribution function is outlined in@5#. If tb,tc , then the
electron’s velocity and energy are evaluated at the cell
boundary and contribute to the electron distribution function
at the cell boundary. The electron is subsequently released in
a different spatial cell with a time (tc2tb) remaining until
the next collision. When the electron penetrates a spatial cell
wall all of its coordinates change continuously, but there is a
possibility of a discontinuity in the radial electric field. The
potential defined byaj and bj is continuous, but can have
discontinuities in its slope at radial cell boundaries. In future
work we will explore how fine a radial mesh is required in
order to eliminate errors from a discontinuous radial field. It
seems extremely likely that a mesh cell size comparable to
the electron mean free path would eliminate errors, but it
may not be necessary to use such small cells.

In these comparisons to the nonlocal model we assume
that aj and bj are the same in all but the outermost radial
cell. The only discontinuity in the radial field therefore oc-
curs at the radial sheath boundary.

Once an electron has been advanced to the location of a
collision, the procedure described by Boeuf and Marode is
used to determine the type of collision@5#. If a null collision
occurs the electron is released with no changes in any of its
coordinates. Excitation and ionization events are tracked in
each spatial cell. The location and kinetic energy of each
secondary electron is stored, and its motion is subsequently
followed. Electrons leave the simulation when they reach the
absorbing outer radial wall or the anode at the end of the

column. A positive column simulation should have wall
losses matched by ionization in each axial cell. Too large~or
too small! an axial field for a given radial potential causes
the electron current to grow~or shrink! exponentially along
the z axis.

We actually developed several versions of this code in
order to test the versions against each other, and eliminate
any possible coding errors. Versions were written in
FORTRAN, C, andFORTH. All ran well on desktop computers
with an Intel 486 or faster processor. Usually 106 electrons
are followed. The calculation times are of the order of sev-
eral hours to days for the self-consistent calculations.

IV. NONLOCAL MODEL

The nonlocal approximation has recently attracted great
attention, and it has been discussed in detail in a number of
review articles. Thus only a brief description of the method
is presented here. For more details the reader is referred to
Refs. @51,52,27#. The problem of the electron losses to the
walls is treated in more detail here.

In a typical dc positive column the average energy gain of
electrons between two collisions is usually small compared
to their average kinetic energy, and elastic collisions are
much more likely than inelastic collisions, so that the EDF is
usually approximated by the well-known two-term expan-
sion into spherical harmonics@53,54#. Since the EDF lacks
any axial and azimuthal dependence, it is represented as
F(r ,v)5F0(r ,v)1v/v•F1(r ,v), with the normalization
*F(r ,v)d3v5n(r ), and withn the electron density.

The nonlocal approximation addresses weakly collisional
plasmas, where the energy relaxation length

le~u!5Alm~u!l* ~u! ~18!

exceeds the discharge dimensions in the range of kinetic en-
ergies of interest@55#, where lm(u)5„Nset(u)…

21 is the
mean free path length for elastic momentum transfer of the
electrons, andl* (u)5@N„sex(u)1s i(u)…#

21 is the mean
free path length for all kinds of inelastic collision processes.
In this case a typical electron moves across the discharge
without a significant change of its total energy~i.e., the sum
of kinetic plus potential energy!. It is therefore assumed that
the isotropic part of the EDF,F0(r ,v), when represented as
a function of total energy

«5u2eF~r !5
mv2

2
2eF~r !5

mvz
2

2
1«perp, ~19!

is essentially spatially constant@31,55#:

F0~r ,v !→F0~r ,«!5F0
~0!~«!1F0

~1!~r ,«!. ~20!

The validity of the nonlocal approximation requires that
F0
(0)(«)@uF0

(1)(«,r )u. The spatially constant main part of the
EDF, F0

(0) , is calculated from a spatially averaged kinetic
equation, which is an ordinary differential equation in total
energy@55#:
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d

d«
S u1/2D«

dF0
~0!~«!

d«
1V̄«F0

~0!~«! D
5„u1/2nex~«!F0

~0!~«!2u1/2nex~«1uex!F0
~0!~«1uex!…

1„u1/2n i~«!F0
~0!~«!2 Ī1~«!…1u1/2nw~«!F0

~0!~«!.

~21!

Here nw denotes an effective wall loss frequency which is
discussed in detail below. The barred quantities denote spa-
tial averages performed over the part of the discharge cross
section, which is accessible for electrons with a given total
energy:

u1/2D«5
2e2Ez

2

3m

2

R2E
0

r* ~«! u3/2~r !

n t~u~r !!
rdr , ~22!

V̄«5
2m

Ma

2

R2E
0

r* ~«!
nm~u!u3/2~r !rdr , ~23!

u1/2nex,i~«!5
2

R2E
0

rex,i

nex,i~u!u~r !1/2rdr , ~24!

Ī1~«!54u1/2n i~2«1ui !F0
~0!~2«1ui !. ~25!

Here I1(«) represents the scattered and secondary electrons
which are produced in an ionization event,
n t(u)5Ns t(u)A2u/m is the total collision frequency,
nm(u)5Nsel(u)A2u/m denotes the elastic momentum
transfer collision frequency,nex5Nsex(u)A2u/m is the ex-
citation collision frequency with the threshold energyuex,
and n i5Ns i(u)A2u/m denotes the ionization frequency
with the thresholdui . The turning pointr * («) of the elec-
tron motion is defined byu„r * («)…50. Analogously, the
maximal radiir ex(«) andr i(«), at which excitation and ion-
ization, respectively, are possible, are defined by
u„r ex,i(«)…5uex,i . ~See Refs.@51,52,27# for details.!

The spatially dependent EDF of the kinetic energy,
F0(r ,u), can be calculated from the EDF of the total energy
F0
(0)(«) using a ‘‘generalized Boltzmann relation’’

F0~r ,u!5F0
~0!
„«5u2eF~r !…. ~26!

In the total energy picture, all electrons which have
gained a total energy higher than the potential energy at the
wall, 2eFw , are able to escape to the wall. For the uncon-
fined electrons with«.2eFw , the nonlocal approach does
not strictly apply@56#, since the assumption that the elec-
trons are reflected by the space charge potential at their turn-
ing point is an important prerequisite for the averaging pro-
cedure which leads to Eq.~21!. However, electrons with a
total energy only slightly exceeding the potential energy at
the wall ~and which are at a distance&lm from it! have to
move almost normally toward the wall in order to overcome
the potential barrier in front of the wall. This means that the
velocity vector of the escaping electrons has to be within a
loss cone@56#. In planar geometry the derivation of the solid
angle dV of the loss cone with the aperture angleap is
straightforward, yielding

dV~«,r !52p@12cos„ap~«,r !…#

52pF12AS e„2Fw1F~r !…

«1eF~r !
D G . ~27!

It was pointed out in Ref.@56# that a rigorous description of
the unconfined electrons requires the solution of the space-
dependent, nonaveraged kinetic equation

1

r

]

]r S u1/2Der
]F0~r ,«!

]r D
1

]

]« S u1/2D«

]F0~r ,«!

]«
1V«F0~r ,«! D

5„u1/2nex~r ,«!F0~r ,«!

2u1/2nex~r ,«1uex!F0„r ,«1uex)…

1„u1/2n i~r ,«!F0~r ,«!2I1~r ,«!…, ~28!

with De5lm
2 (u)nm(u)/3 the electron diffusion coefficient,

and all other symbols as defined in Eqs.~22!–~25! without
performing the spatial averaging. This equation has to be
solved subject to the boundary condition that the fraction of
the thermal flux of the electrons which is scattered into the
loss cone and escapes to the wall is balanced by the diffusion
flux from the plasma@55,25#. This boundary condition has to
be applied at the sheath boundaryr'R:

vF0

dV

4pU
r'R

52De

]F0

]r U
r'R

. ~29!

Here it should be noted that a zero boundary condition for
the EDF was used in Ref.@56# in order to obtain a simple
analytical solution of the problem. However, as will become
evident below in the discussion of our Monte Carlo results,
this boundary condition may overemphasize the spatial de-
pendence of the EDF for«.2eFw , at least within the va-
lidity range of the nonlocal approximation. In reality, par-
ticularly if the loss cone solid angledV is small compared to
4p, only a small fraction of the electrons is actually able to
escape to the wall, and the EDF may show only a weak
radial dependence.

In order to avoid the complicated procedure of solving
Eq. ~28! we will rely on the approximate spatial constancy of
F0(r ,«), and adopt the more approximate procedure of in-
troducing a wall loss termu1/2nw into the space-averaged
kinetic equation~21!, which treats the wall losses essentially
as an additional inelastic loss process depleting energetic
electrons. The validity of this approach will be discussed
below in the comparison to our Monte Carlo results.

In the following we will estimate the wall escape fre-
quencynw for electrons in a positive column. It will be as-
sumed that the potential drop between the plasma and the
wall is concentrated in the sheath, so thatu(r )
'u(r50)5« for the entire discharge cross section. Instead
of solving the stationary diffusion problem Eq.~28! with its
source terms~i.e., the electron heating term! and its sink
terms ~the wall losses and inelastic collisions! we consider
the ~auxiliary! problem of finding the decay time of the EDF
in the energy range«.2eFw which can be identified
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with the typical lifetime or wall escape timet of an electron
in the discharge.~This procedure is commonly used in dif-
fusion problems.! Assuming that for electrons in this total
energy range the wall losses are much more important than
inelastic collisions, we retain only the spatial diffusion term
in the kinetic equation forF0(r ,«,t) which describes the
temporal decay of the EDF:

2
]F0~r ,«,t !

]t
5De

1

r

]

]r
r

]F0~r ,«,t !

]r
. ~30!

This equation is solved subject to the boundary condition
~29!. It has the following fundamental solution:

F0~r ,«,t !}e
2t/tJ0S r

ADet
D . ~31!

HereJ0 is the zeroth order Bessel function of the first kind.
Inserting Eq.~31! into Eq. ~29! yields

J1~R/ADet!

J0~R/ADet!
5
3ADet

lm

dV

4p
, ~32!

with J1 is the first-order Bessel function of the first kind. For
lm!R the right hand side of Eq.~32! is large compared to
unity, and J0(R/ADet) approaches zero. This yields the
well-known lifetime in the diffusion dominated casetdiff :

t5tdiff5S R2.4D
2 1

De
. ~33!

In the opposite case the left hand side of Eq.~32! can be
expanded into the lowest order, which yields the lifetime in
the free flight caset ff :

t5t ff50.5
R

lm

4p

dV

1

nm
. ~34!

An interpolation for the intermediate regime can be obtained
by adding both times:t5tdiff1t ff . In the free flight case the
electron escape time becomes so small that the time which
an electron needs to be scattered into the loss cone must be
included. This timetsc is given by

tsc5S 2nm
dV

4p D 21

. ~35!

The factor 2 on the right hand side of Eq.~35! arises from the
fact that in the free flight case two loss cones have to be
considered, as will be illustrated below.

A general interpolation for the wall escape time of the
electrons is thus given by

t5tdiff1t ff1tsc5S R2.4D
2 1

De
1
1

2 SR1lm

lm
D 4p

dV

1

nm
.

~36!

It should be noticed thatt ff contributes only in the case
lm'R. In the free flight caselm@R and t'tsc@t ff and
tdiff , and in the highly collisional caset'tdiff@t ff and
tsc.

The expression for the wall escape term in the kinetic
equation~21! is given by

u1/2nw~«!'
«1/2

t
. ~37!

It should be mentioned that the loss cone approximation
of Eq. ~27! is actually correct only for an electron in front of
a plane wall. This should be a good approximation for elec-
trons in close vicinity to the positive column wall. In the free
flight case, however, electrons from the central regions of the
discharge also contribute to the wall loss. A more rigorous
analysis requires a consideration of the angular momentum.
Due to its conservation the loss cone becomes asymmetric
except for electrons very close to the wall. In the cylindrical
system an electron may reach the wall when its total energy
of the perpendicular motion«perp surpasses the sum of its
potential energy and its centrifugal energy at the wall, i.e., if

«perp>2eFw1
Lz
2

2mR2
. ~38!

For an electron at a radiusr , this means

mv r
2

2
1

Lz
2

2mr2
>2e„Fw2F~r !…1

Lz
2

2mR2
. ~39!

By introducing the anglea as the polar angle of the electron
velocity vector referenced to the local radius vector, the ra-
dial kinetic energy mv r

2/2 can be expressed as
(cos2a)3u5(cos2a)3„«1eF(r )…. One obtains

cos2a~«,r ,Lz!>

2e„Fw2F~r !…1
Lz
2

2m S 1R2 2
1

r 2D
«1eF~r !

.

~40!

If the electron has no angular momentum about thez axis ,
Lz50, thena corresponds to the aperture angle in planar
geometry,ap , as described by Eq.~27!. If LzÞ0, i.e., for
finite azimuthal velocity, then the second term in the nu-
merator causesa to increase. The loss cone therefore be-
comes elliptic, i.e., for the same total energy« the aperture
anglea is smaller for electrons moving in a plane containing
the z axis than for electrons moving in the azimuthal plane.
As can be seen from Eq.~40! the rotational asymmetry of the
loss cone becomes maximal asr tends toward 0, and it dis-
appears ifr approachesR. The curved wall appears planar
for the electrons very close to it. For electrons close to the
axis it may even happen that the forward and backward loss
cones~referenced to the closest wall! merge in the azimuthal
direction, and form a ‘‘loss band’’ in velocity space, as will
be demonstrated below. Equation~40! could in principle be
used to determine a wall loss rate in a calculation based on a
nonlocal model, but the complexity of using Eq.~40! would
violate the spirit of the simple nonlocal approach. Therefore
we will use the loss cone expression Eq.~27! in the follow-
ing comparisons to the Monte Carlo results, since, due to the
cylindrical geometry even in the free flight case, the major
part of the wall escape is carried by electrons close to the
wall, for which the loss cone is almost symmetric.
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In order to illustrate the effect of the second loss cone in
the free flight case, we will also perform nonlocal calcula-
tions using only one loss cone, which may be more justified
for lm&R. This means we neglect the factor of 2 in Eq.~35!.

V. RESULTS AND DISCUSSION

In this section we first present and discuss Monte Carlo
results which demonstrate that the nonlocal approach is
qualitatively correct using the energy and radial dependences
of the EDF’s. Then we explore angle-resolved EDF’s from
the Monte Carlo simulations to test the two-term spherical
harmonics expansion underlying the nonlocal approach. Here
we are concerned about the anisotropy of EDF’s in velocity
space from the axial field at lowN ~high Ez /N) and from
wall losses at allN. Finally we compare the Monte Carlo
results and the results of the nonlocal discharge models with
and without wall losses. The inclusion of only single-step

ionization in our models means that the absolute electron
density is arbitrary. The reader may consider all EDF’s pre-
sented in the subsequent figures to have been divided by the
axial electron density. For example, in comparison to the
nonlocal results, we plotF0

(0)(«)/n(r50).
In Fig. 1, EDF’s for various neutral gas densities are plot-

ted as a function of the total energy and the radius. At the
lower N in Figs. 1~a! and 1~b! the EDF’s show a nonlocal
behavior, i.e., they are spatially constant for a given total
energy. Only at the wall do the EDF’s drop due to the wall
loss of electrons. At the highest pressure in Fig. 1~c! the EDF
also shows deviations from the nonlocal behavior in the
plasma bulk. For a given total energy the EDF decreases
toward the discharge axis. The reason for this decrease has
been discussed in detail elsewhere. It is basically due to the
effect that for a given total energy the kinetic energy of the
electrons is maximum in the discharge center, and therefore
so is the efficiency of the inelastic collisions which lead to a

FIG. 1. EDF’s from the Monte Carlo calculations plotted as function of the total energy« and the radius for various pressures. The EDF’s
are normalized to the electron density atr50.04 cm.
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removal of the electrons from the high energy tail of the
EDF. The results presented in Fig. 1 are consistent with pre-
viously obtained results@25,27#, in which the wall loss of
electrons was not consistently included. It should be noted
that even for total energies significantly higher than the po-
tential energy at the wall, the nonlocal behavior of the EDF
prevails at the lower neutral gas densities in spite of the wall
losses.

In Fig. 2 we present a more quantitative picture of the
radial dependence of the EDF. Monte Carlo results for
EDF’s in the discharge center (r50.04 cm! at about
R/2, r50.52 cm, and, at the inner boundary of the last cell
before the wall,r50.96 cm, are plotted for various gas den-
sities. For neutral gas densities as high as 331015 cm23 the
EDF’s as functions of the total energy agree very well. For a

neutral gas density of 131016 cm23 the nonlocal behavior
of the EDF begins to break down and it disappears totally for
N5331016 cm23. The upper limit for a nonlocal EDF of
N3R,131016 cm22 in an argonlike model gas is consis-
tent with results of previous investigations@25,27#, and with
the intuitive criterionl«*R @55#. The wall losses of elec-
trons, which have been neglected in most previous investi-
gations, do not lead to a reduction of the range of applica-
bility for a nonlocal model for the EDF.

In order to investigate the loss cone it is necessary to
study the angle-resolved EDF’s. In Fig. 3 we present the
EDF resolved in the azimuthal anglef and the cosine of the
polar angle q referenced to the discharge axis~with
cosq51 in the direction of the electric field! at
N5331015 cm23 sampled at three radial positions. The

FIG. 2. EDF’s from the Monte Carlo calculations at different radial positions plotted as functions of the total energy. The EDF’s are
normalized to the electron density atr50.04 cm.
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anglef50 denotes an electron moving normally toward the
nearest wall. For each plot we merged three radial bins in
order to improve the statistics, and the center positions of
each interval is given in the plots. At this gas density
lm'3 mm for the energy shown. For the EDF close to the
wall the effect of the loss cone is quite visible. It should be
noted that the effect of the loss cone is found atf5p. This
means that the EDF is not depleted of the electrons flying
toward the wall, but of those electrons which have hit the
wall but do not return. The EDF is actually depleted in the
‘‘anti-loss-cone.’’ The dashed lines show the aperture angle
of the loss cone to be expected from Eq.~27!. They are in
good agreement with the Monte Carlo results. It should be
noted that the walls of the loss cone are not vertical, since an
averaging over the radius and an energy interval of 1 eV has
been performed. Atr5R/2'2lm the loss cone has almost
completely disappeared due to scattering of electrons into the
loss cone. It is totally invisible in the center of the discharge.
It should be noted that the EDF also exhibits a significant
anisotropy outside the loss cone region due to the axial elec-
tric field visible by the increase of the EDF in a direction

antiparallel to the electric field. However, the fact that the
EDF increases almost linearly with2cosq indicates that the
two-term approximation is still accurate especially if the loss
cone were absent.

In Fig. 4 we present a plot similar to that above, but this
time for a value ofN that is ten times lower. The mean free
pathlm is about 3 cm, which corresponds to the almost free
flight case. The EDF close to the wall now shows a second
loss cone atf50. This loss cone is the ‘‘anti-loss-cone’’
caused by wall losses at the adjacent wall of the discharge
tube. Moving toward the center the loss cones show exactly
the behavior that was predicted in the discussion of Eq.~40!.
While its polar aperture angle remains almost constant, it
widens in the azimuthal direction. In the center both loss
cones merge to form a loss band. The difference between the
level of the EDF at the bottom of the loss cone and the EDF
at the outside edges of the cone decreases exponentially with
the distance from the wall as}exp„(r2R)/lm…. The fact
that the bottom of the loss cone remains flat and the walls
~almost! vertical when the center is approached is a conse-
quence of our assumption of isotropic scattering. Electrons

FIG. 3. The EDF resolved in the velocity angle space forN5331015 cm23 at different radial positions. The EDF has been sampled in
three radial bins and over an energy interval of 1 eV. The dashed lines show the aperture angle found from Eq.~27!.
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are scattered to every angle within the loss cone with equal
probability. Conversely, anisotropic small angle scattering
caused, for instance, by Coulomb collisions would lead to a
rounded bottom of the cone and smoother walls, since the
electrons would diffuse in angle space into the cone. The
axial anisotropy of the EDF is even more pronounced than in
Fig. 3. The increase of the EDF with2cosq is significantly
nonlinear. This shows that even in the absence of the loss
cone, higher order harmonics in the spherical harmonics ex-
pansion would be present, and that the two-term approxima-
tion would be questionable. These results should be kept in
mind when a comparison with nonlocal calculations are per-
formed, which are formally based on the two-term approxi-
mation.

Figure 5 demonstrates the dependence of the loss cone on
the energy. With an increasing energy difference above the
wall potential energy, the loss cone angle increases. The ana-
lytically predicted aperture angle of the loss cone from Eq.
~27! is again in good agreement with the Monte Carlo re-
sults.

The results in Figs. 1 and 2, obtained with a benchmark
Monte Carlo method, provide evidence that the nonlocal ap-

proximation is founded on the correct physical assumptions
and that it should thus be qualitatively valid. In the follow-
ing, we will discuss the quantitative correctness of the non-
local approximation. In Fig. 6 we compare different solu-
tions of the kinetic equation~21! of the nonlocal
approximation with the results of the Monte Carlo method.
All calculations have been performed with the same axial
electric fieldEz and the same wall potentialFw which were
obtained from the self-consistent Monte Carlo-based model.
Nonlocal calculations have been performed without includ-
ing the wall losses of electrons, and using the lifetime ap-
proximation of Eq.~37! including one or two loss cones in
the free flight case. In particular the results for the lowest gas
densities in Fig. 6 demonstrate the vital importance of in-
cluding the wall losses in the nonlocal approximation. The
nonlocal calculations without wall losses show overpopu-
lated EDF tails and too high mean energies for all neutral gas
densities investigated, since the most important channel for
the loss of high energy electrons is neglected. The inclusion
of the wall losses using Eq.~37! enables us to achieve much
better agreement with the Monte Carlo results if both loss
cones are properly included. At the lower gas density, when

FIG. 4. The EDF resolved in the velocity angle space forN5331014 cm23 at different radial positions. The EDF has been sampled in
three radial bins and over an energy interval of 1 eV. The dashed lines show the aperture angle found from Eq.~27!.
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lm*R, the use of only one loss cone yields significantly
worse discordance with the Monte Carlo results. Both ap-
proximations yield reasonable agreement with the Monte
Carlo results at the higherN for the confined and unconfined
electrons. It should be noted that forN5131015 cm23 the
mean free path is already slightly smaller than the discharge
radius. The good agreement of the solutions using one and
two loss cones in Eq.~37! visible in Figs. 6~c! and 6~d!
shows that the wall losses are predominantly determined by
the diffusion time of the electrons,tdiff . In general one can
state that nonlocal calculations including the wall losses are
in very good agreement with the Monte Carlo results for
confined electrons. Relatively small deviations occur, usually
above the potential energy at the wall due to the approximate
description of the unconfined electrons. The slight deviations
at very low energies reflect the deviations in the high energy
tail of the EDF due to the different particle source terms
from ionization. The drastic errors caused by the neglect of
the wall losses in the nonlocal calculations, particularly at
low neutral gas densities, originate in the fact that the wall
loss of electrons, in the energy range where it is possible, has
an even stronger effect on the EDF than the ionization col-

lisions. At lower gas densities, ionization represents a larger
fraction of the total inelastic processes than at higher pres-
sures. The fraction of ionization processes in the total num-
ber of inelastic processesnn i /(nn i1nnex) obtained from the
Monte Carlo model is 0.571 forN5131014 cm23, 0.452
for N5331014 cm23, 0.318 for N5131015 cm23, and
0.203 forN5331015 cm23.

At first glance the good agreement of the nonlocal calcu-
lations, which are based on the two-term approximation, and
the Monte Carlo results may seem surprising, since our
Monte Carlo results have demonstrated significant deviations
from the two-term approximation at lower neutral gas densi-
ties. However, our results prove that in spite of the consid-
erable anisotropy of the EDF, the nonlocal approximation
yields quantitatively reasonable results, and is thus still ap-
plicable even under these extreme conditions. This is based
on the fact that the EDF reflects the fraction of time which an
electron spends during its lifetime in the discharge in some
energy interval. The simple and physically transparent
method of finding the mean lifetime of an electron in the
discharge before it escapes to the wall is obviously capable

FIG. 5. The EDF resolved in the velocity angle space forN5331014 cm23 for different energies above the wall potential. The EDF has
been sampled in three radial bins and over an energy interval of 1 eV. The dashed lines show the aperture angle found from Eq.~27!.
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of producing quantitatively reasonable results, even if formal
mathematical validity criteria seem to be violated.

In the following we investigate to what extent the differ-
ences in the distribution functions affect the macroscopic
plasma parameters. In Fig. 7 the self-consistent electric field
strengths as obtained from the Monte Carlo model and the
nonlocal discharge model with different treatment of the wall
losses are depicted. Both nonlocal calculations, which in-
clude the wall losses with one or two loss cones, yield a good
agreement with the Monte Carlo-based model. Their results
are practically indistinguishable. A few percent of the differ-
ences shown in Fig. 7 may be due to an imperfect conver-
gence of the Monte Carlo simulations to self-consistent so-
lutions. The maximum deviation from the Monte Carlo

results is less than 8% for the neutral gas density below
N5131016 cm23, in which the nonlocal approach is valid.
However, the nonlocal approach still yields a reasonable
value of Ez even at the higher neutral gas density of
N5331016 cm23, where the EDF deviates significantly
from a nonlocal EDF. This indicates that the EDF obtained
from the nonlocal calculations may still represent a reason-
able spatial average of the EDF. The nonlocal calculation
may thus still yield reasonable spatial averages of the ioniza-
tion rate, which is decisive for the axial electric field
strength. The nonlocal calculations, without including the
wall losses, yield significantly lower values ofEz than the
Monte Carlo calculations or the nonlocal calculations includ-
ing wall losses. This behavior corresponds to the higher

FIG. 6. Comparison of EDF’s from the Monte Carlo calculations and from nonlocal calculations with different treatments of the wall
losses of the unconfined electrons. All EDF’s are evaluated atr50.04 cm withR51.0 cm. The values of the axial electric fieldEz and the
wall potentialFw are the self-consistent values from the Monte Carlo model.
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population of high energy part of the EDF compared to the
other approaches~or reality! ~see Fig. 6!, which has to be
compensated for by lowerEz in order to achieve the particle
balance.

The differences between the two approaches using one or
two loss cones primarily affect the self-consistent wall po-
tentialFw rather thanEz . The self-consistent values of the
wall potential from the Monte Carlo model and the two non-
local calculations including wall losses with one and two loss
cones are shown in Fig. 8. The results of the nonlocal model
using two loss cones agree with the Monte Carlo results
within better than 2.5 V in the applicable range of the non-
local approximation,N,131016 cm23, except for the low-
est neutral gas density. This corresponds to a deviation of

less than 8%, except for the lowest neutral gas density with a
deviation of about 15%. In this range of neutral densities the
magnitudes of the self-consistent wall potential from the
nonlocal calculations using Eq.~37! with two loss cones are
consistently lower than the results from the Monte Carlo
method, since for the sameEz andFw the nonlocal EDF’s
showed an excess of high energy electrons as compared to
the Monte Carlo results. A decrease of the magnitude of the
wall potential increases the amount of wall losses. Hence the
nonlocal calculations using Eq.~37! with one loss cone
yields consistently smalleruFwu than the calculations using
two cones. Significantly larger deviations forFw appear at
N.331016 cm23, where the nonlocal approach is not ex-
pected to apply.

It should be noted that the nonlocal EDF’s and the Monte
Carlo EDF’s look almost identical if each calculation uses its
own self-consistentEz andFw . This is demonstrated by Fig.
9 for a neutral gas density ofN5131014 cm23. The com-
parison in Fig. 6~a! at the sameR3N shows larger discor-
dance, becauseEz andFw in the nonlocal calculations were
fixed at the values from the self-consistent Monte Carlo
simulation.

In Fig. 10 we compare the radial profiles of the mean
kinetic energy obtained from the Monte Carlo model and the
self-consistent nonlocal calculations including wall losses
from Eq.~37! using two loss cones. Each model uses its own
self-consistent axial electric fieldEz and wall potential
Fw . The nonlocal results shown here are in good agreement
with the Monte Carlo results. The mean energies from the
nonlocal model are slightly higher than the Monte Carlo re-
sults in the center~about 5%! and approach the Monte Carlo
results toward the wall. The Monte Carlo results definitely
support the basic prediction of the nonlocal model that the

FIG. 7. The self-consistent axial electric fieldsEz from the
Monte Carlo and nonlocal discharge models with different treat-
ments of the wall losses of the unconfined electrons as a function of
the neutral gas densityN. The two nonlocal calculations which
include wall losses are slightly below the Monte Carlo results, and
partially overlap.

FIG. 8. The self-consistent wall potentialsFw from the Monte
Carlo and nonlocal models including the wall losses of the uncon-
fined electrons as a function of neutral gas densityN.

FIG. 9. Comparison of EDF’s form the Monte Carlo model and
from the nonlocal models including the wall losses of the uncon-
fined electrons each calculated with its self-consistent axial electric
field Ez and wall potentialFw .
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mean kinetic energy in a positive column decreases in radial
direction if the EDF is convex. This means that the ‘‘local’’
temperature of the EDF,Te(«)52„d ln(F0

(0))/d«…21 ~i.e.,
the slope of the EDF in logarithmic presentation! decreases
with increasing« as is the case for our EDF’s in the inter-
esting range of energies. Since in the nonlocal model the
EDF of kinetic energy is found from the EDF of the total
energy by removing the low energy part of the EDF which
has a high local temperature, the parts of the EDF with a
lower local temperature contribute more strongly to the over-
all mean kinetic energy and thus lead to the observed de-
crease of the mean energy toward the wall. The Monte Carlo
results show exactly the same behavior. They therefore dem-
onstrate the inaccuracy of the traditional view of the positive
column, which assumes that the mean kinetic energy is in-
dependent of the radius@57,58#.

The self-consistent electron density profiles resulting from
the Monte Carlo model and the nonlocal model including
wall losses from Eq.~37! with two loss cones are shown in
Fig. 11. Each model uses its own self-consistent axial elec-
tric field Ez and wall potentialFw . Since the different pro-
files are all normalized to the same central electron density,
the deviations between the profiles from the nonlocal and
Monte Carlo approaches accumulate at the wall. There one
finds deviations of up to 15% with the nonlocal density pro-
files being slightly higher than their Monte Carlo counter-
parts. The slower decrease of the electron density just reflects
the remaining slight differences in the nonlocal and the
Monte Carlo EDF’s. As discussed above, these differences
seem to be due to the only approximate treatment of the wall
losses of the unconfined electrons in the nonlocal approxi-
mations.

VI. SUMMARY AND OUTLOOK

In the present investigation we presented an accurate and
efficient Monte Carlo method to study the electron kinetics

of a positive column plasma. We used this method as a
benchmark for testing the nonlocal approximation, which is a
very efficient method for modeling the electron kinetics in
low-pressure plasmas.

The Monte Carlo results prove that in the low-pressure
regime the EDF is nonlocal, i.e., a spatially constant function
of total energy. For our argonlike model gas the nonlocal
regime for the EDF extends up to a radius times neutral gas
density product ofR3N,131016 cm22, which corre-
sponds to a gas pressure of about 0.3 torr at 300 K in a
1-cm-radius positive column. This value is consistent with
the more intuitive validity criterion for the nonlocal approxi-
mation l«*R. The nonlocal character of the EDF is not
disturbed by the wall losses of electrons.

It has been demonstrated that the wall losses of electrons
can be properly included in nonlocal calculations using a
simple lifetime approach derived from a wall loss cone. This
loss cone or its effect on the EDF has been observed in
Monte Carlo simulations. Its scaling and the correctness of
the analytic formula describing its aperture angle have been
demonstrated. It also has been shown that in the free-flight
case two loss cones are present: one loss cone to the nearest
wall and one cone to the opposite wall.

The quantitative comparisons conducted between the
Monte Carlo based-model and discharge models based on
the nonlocal approach demonstrated the importance of in-
cluding the wall losses of unconfined electrons in the nonlo-
cal approximation. EDF’s calculated using the nonlocal
model without the wall losses showed significant deviations
from the Monte Carlo results for the sameEz andFw . A
good agreement between both methods is achieved if the
wall losses are included in the nonlocal model. Usually the
inclusion of wall losses from Eq.~37! with two loss cones in
the free-flight case yields the best agreement of nonlocal cal-
culations with the Monte Carlo results. Within the validity
range of the nonlocal approximation agreements within 8%
for the axial electric field strengths and the wall potential
~except for the lowest neutral gas density considered!, within

FIG. 10. Comparison of the radial profiles of the mean electron
kinetic energy from the Monte Carlo model~symbols! and the non-
local model with wall losses from Eq.~37! ~solid lines!. The Monte
Carlo and the nonlocal calculation each used its own self-consistent
axial electric fieldEz and wall potentialFw .

FIG. 11. Comparison of the radial profile of the relative electron
density from the Monte Carlo model~symbols! and the nonlocal
model with wall losses from Eq.~37! ~solid lines!. The Monte Carlo
and the nonlocal calculation each used its own self-consistent axial
electric fieldEz and wall potentialFw .
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5% for the mean kinetic energies and 15% for the electron
density profiles, were achieved with the nonlocal model in-
cluding the wall losses from Eq.~37!.

In particular, we demonstrated that nonlocal calculations
yield good quantitative results, even if a significant anisot-
ropy of the EDF exists at low pressures. In this case the
two-term spherical harmonic approximation, which is used
in the nonlocal approximation, becomes questionable. How-
ever, our results prove that the nonlocal approximation is
valid nevertheless, if the physically based lifetime approach
is used for describing the wall losses.

From the above results we conclude that the nonlocal ap-
proximation produces a very accurate description of the con-
fined electrons and a reasonably accurate description for the
unconfined electrons, within its range of validity. The high
computational efficiency of nonlocal models is a major ad-
vantage in the modeling of low-pressure discharges. In our
particular case, computation times of about 1 min for the
self-consistent nonlocal calculations were achieved in com-
parison to calculation times of the order of several hours to
several days for the Monte Carlo code when tracking 106

electrons.
In the present study we demonstrated the value of an ef-

ficient Monte Carlo technique as a benchmark method for
testing and improving simpler approximations methods. Fur-
ther improvements of the Monte Carlo–based positive col-
umn model are planned. By implementing a fluid description
of the ions, a self-consistent potential profile in the plasma
should be obtained. The efficiency of the present Monte
Carlo approach can be conserved by approximating the self-
consistent potential by a piecewise parabolic function. With
this improved model the positive column at higher pressures
will be investigated in future studies in order to test the range
of validity of the local approximation.

ACKNOWLEDGMENTS

The authors are indebted to Professor Lev D. Tsendin for
stimulating discussions and for carefully reading the manu-
script. One of the authors~U.K.! was supported by the Alex-
ander von Humboldt foundation. This research was sup-
ported by the University of Wisconsin Graduate School, by
the General Electric Company, and National Institute of
Standards and Technology under the Advanced Technology
Program~No. 70NANB3H1373!, and by the National Sci-
ence Foundation under Grant ECS 93-20515.

@1# G. G. Lister, J. Phys. D25, 1649~1992!.
@2# M. J. Druyvesteyn, Z. Phys.64, 781 ~1930!.
@3# B. Davydov, Phys. Z. Sowetunion8, 59 ~1935!.
@4# P. M. Morse, W. P. Allis, and E. S. Lamar, Phys. Rev.48, 412

~1935!.
@5# J. P. Boeuf and E. Marode, J. Phys. D15, 2169~1982!.
@6# M. J. Kushner, J. Appl. Phys.54, 4958~1983!.
@7# M. J. Kushner, J. Appl. Phys.61, 2784~1987!.
@8# P. L. G. Ventzek, T. J. Sommerer, R. J. Hoekstra, and M. J.

Kushner, Appl. Phys. Lett.63, 605 ~1993!.
@9# P. L. G. Ventzek, R. J. Hoekstra, and M. J. Kushner, J. Vac.

Sci. Technol. B12, 461 ~1994!.
@10# C. K. Birdsall, IEEE Trans. Plasma Sci.19, 65 ~1991!.
@11# M. Surendra, D. B. Graves, and I. J. Morey, Appl. Phys. Lett.

56, 1022~1990!.
@12# M. Surendra and D. B. Graves, Appl. Phys. Lett.59, 2091

~1991!.
@13# M. Surendra and D. B. Graves, IEEE Trans. Plasma Sci.19,

144 ~1991!.
@14# V. Vahedi, G. DiPeso, C. K. Birdsall, M. A. Liebermann, and

T. D. Rognlien, Plasma Sources Sci. Technol.2, 261 ~1993!.
@15# V. Vahedi, C. K. Birdsall, M. A. Liebermann, G. DiPeso, and

T. D. Rognlien, Plasma Sources Sci. Technol.2, 273 ~1993!.
@16# W. N. G. Hitchon, D. J. Koch, and J. B. Adams, J. Comput.

Phys.83, 79 ~1989!.
@17# T. J. Sommerer, W. N. G. Hitchon, and J. E. Lawler, Phys.

Rev. Lett.63, 2361~1989!.
@18# T. J. Sommerer, W. N. G. Hitchon, and J. E. Lawler, Phys.

Rev. A 39, 6356~1989!.
@19# W. N. G. Hitchon, G. J. Parker, and J. E. Lawler, IEEE Trans.

Plasma Sci.21, 228 ~1993!.
@20# G. J. Parker, W. N. G. Hitchon, and J. E. Lawler, Phys. Fluids

B 5, 646 ~1993!.

@21# G. J. Parker, W. N. G. Hitchon, and J. E. Lawler, Phys. Rev. E
50, 3210~1994!.

@22# V. A. Feoktistov, A. M. Popov, O. B. Popovicheva, A. T.
Rakhimov, T. V. Rakhimova, and E. A. Volkova, IEEE Trans.
Plasma Sci.19, 163 ~1991!.

@23# P. M. Meijer, W. J. Goedheer, and J. D. P. Passchier, Phys.
Rev. A 45, 1098~1992!.

@24# M. J. Hartig and M. J. Kushner, J. Appl. Phys.73, 1080
~1993!.

@25# C. Busch and U. Kortshagen, Phys. Rev. E51, 280 ~1995!.
@26# D. Uhrlandt and R. Winkler, J. Phys. D29, 115 ~1996!.
@27# U. Kortshagen, C. Busch, and L. D. Tsendin, Plasma Sources

Sci. Technol.5, 1 ~1996!.
@28# U. Kortshagen and L. D. Tsendin, Appl. Phys. Lett.65, 1355

~1994!.
@29# U. Kortshagen, I. Pukropski, and L. D. Tsendin, Phys. Rev. E

51, 6063~1995!.
@30# V. Kolobov and W. N. G. Hitchon, Phys. Rev. E52, 972

~1995!.
@31# I. B. Bernstein and T. Holstein, Phys. Rev.94, 1475~1954!.
@32# C. M. Ferreira and J. Loureiro, J. Phys. D16, 2471~1983!.
@33# C. M. Ferreira and J. Loureiro, J. Phys. D17, 1175~1984!.
@34# E. V. Karoulina and Y. A. Lebedev, J. Phys. D21, 411~1988!.
@35# E. V. Karoulina and Y. A. Lebedev, J. Phys. D25, 401~1992!.
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